American Journal of Environmental and Resource Economics 2017; 2(4): 123-131 http://www.sciencepublishinggroup.com/j/ jere !oi: 10.11"4#/j. jere.20170204.12

Comparative Performance Evaluation of Alternate and Convectional Furrow Irrigation under Different Water Application Level on Cabbage Water Use Efficiency and Economic Analysis

Jemal Nur Hassene^{1, *}, Mukerem Taha Seid²

¹\$romi %gricultur I &ese rch 'nstitute()e!is %gricultur I &ese rch *entre(%gricultur I +ngineering &ese rch ,rocess(- r r(+thiopi ²*ollege o. %griculture n! +n/ironment I Ociences(Ochool o. &ur I 1e/elopment n! %gricultur I +2tension(- r m 3 4ni/ersit3(1ire 1 w (+thiopi

Email address:

5eminur 6 gm il.com (5. 7. - ssene) ⁸*orrespon!ing uthor

To cite this article:

Received: %pril 10(2017; Accepted: %pril 24(2017; Published: 5une 20(2017

Abstract: Ouit ble irrig tion metho! with pplic tion le/el is essenti I.or ! pt tion n! !option in the re s where w ter resources re limite!.; here.ore(.iel! e2periment w s con!ucte! to test the per.orm nce o. Itern te .urrow irrig tion (%)' or))') n! con/ection I .urrow irrig tion (*)') with three w ter pplic tion le/el on crop(3iel! response(w ter use e..icienc3 n! cost bene.it n I3sis o. c bb ge. ; he e2periment h ! two . ctors(. ctori I !esign rr nge! in & n!omi?e! *omplete @loc: 1 esign (&*@1) with nine tre tments o. three replic te.; he tre tment n mel3 three .urrow 'rrig tion metho! Itern ti/e) urrow 'rrig tion (%)')() i2e!) urrow 'rrig tion ())') n! *on/ection I) urrow 'rrig tion metho!s (*)') n! three pplic tion le/els .ull (100A)(three .orth 7BA n! h l. B0A o. .ull +; c (crop w ter reCuirement). ; he result shows * < 4 + (< 4+ n! +<, were highl3 signi.ic ntl3 (,D0.01) ...ecte! b3 both '9 s n! %=s. ; he highest n! the lowest me n crop n! irrig tion w ter use e...icienc3 (* < 4 + n!' < 4 +)(n! economic w ter pro!ucti/it3 (+ < ,) were recor!e! b3 %)' n! *)' irrig tion. < here s(un!er %=s the highest n! the lowest me n * < 4 + (' < 4 + n! + <), were recor!e! b3 BOA n! 100A +; c %pplic tion !epth. 9 2imum w ter s /e! resulte! .rom %)' n!))'(with BOA(7BA n! 100A +; c pplic tion !epth w s eCu II3 compute! s B#.33A(37.B0A n! 1"."7A which coul! irrig te !!ition I re o. 0.20(0."0 n! 1.40 h .or e ch tre tment respecti/el3. *ontr ril3 3iel! re!uction w s higher in))' .ollowe! b3 %)' n! *)' with the s me %=s. 7& (net return) pro!uce! per hect re w s higher in *)'.ollowe! b3 %)' n!))'. 'n c se o. @*&(%)' with 7BA n! BOA +; c w s higher th n))' .ollowe! n! the sm llest b3 *)' o. BOA n! 7BA +; c !e.icit le/el. - ence 3iel! re!uction n! 7& incurre! b3 Itern te (%)' n!))') were compens te!.rom !!ition lirrig ble re b3 !i/erting the w ter n! l bour s /e!. Eener II3 .rom o/er II in/estig tion o. * < 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4 + (< 4))' n! *)'.or the w ter sc rce re.

Keywords: %Itern te) urrow 'rrig tion(1e.icit =e/els(* bb ge *rop(< ter 4se +..icienc3(+conomic %n I3sis

1. Introduction

'rrig te! griculture e2ten!s o/er 270 million hect res F16. % Ithough it represents onl3 17A o. the worl! culti/ te! re (it pro/i!es 40A to 4BA o. the worl! .oo! n! .iber suppl3 F26. 'rrig te! griculture is the m jor consumer o. / il ble .resh w ter worl!wi!e n! its consumption is estim te! t

H70A o. the e2isting .reshw ter supplies F26. ; he competing uses .or w ter (!omestic(in!ustri l(n! en/ironment l) n! the incre sing !em n! .or .oo! !ue to r pi!l3 growing worl! popul tion reCuire n urgent impro/ement o. pro!ucti/it3 per unit o. w ter consume! in griculture F36.

%bout IOA o. the irrig te! l n! o. the worl! is irrig te! using rel ti/el3 ine..icient sur. ce irrig tion metho!s F4G.

Oimil rl3 in + ster +thiopi tr !ition I sur. ce irrig tion metho!s (b sin(bor!er n! .urrow) re wi!el3 use! to irrig te crops(though cute w ter short ge. 7 ow ! 3 the mo!ern(high-tech n! e..icient micro irrig tion metho!s (!rip(bubbler(sprin:ler etc.) re !/oc te! worl!wi!e(howe/er; in !e/eloping countries li:e +thiopi is not ..or! ble(bec use o. high cost o. inst II tion(oper tion n! m inten nce(n! reCuire! s:ille! m npower. ;hus see:ing .or e..icient irrig tion metho!s th t re economic I(e s3 to inst II n! oper te(n! which re re !il3 ccept ble to the . rming communit3 is !em n!ing.

) urrow irrig tion(report32! w;86 (n) 6 (() - 3() - 100(r) - 5(e) - 2(p) - 6 or oic ois4(r) - 5(r 024) - oo t0 2iient wee - r7 - 5

12B 5em I 7ur - ssene n! 9u:erem ; h 0ei!: *omp r ti/e ,er.orm nce +/ lu tion o. %Itern te n! *on/ection I)urrow 'rrig tion un!er 1i..erent < ter %pplic tion =e/el on * bb ge < ter 4se +..icienc3 n! +conomic %n I3sis

$$= 0."B 8 1 0^{-3} 8 8 \sqrt{2}g$$
 (1)

where; N is !isch rge .rom siphon tube $(I s^{-1})($ is re o. cross section(insi!e o. tube $(cm^2)($ g is cceler tion !ue to gr /it3 (cm sec⁻¹(I#1cm sec⁻²) n! - is e..ecti/e he ! c using .low (cm).

; he e..ecti/e he ! w s c libr te! to be 12 cm n! hence the resulting !isch rge out o. the siphon tube w s 1.1B liters per secon!. ; his !isch rge w s selecte! in or!er to /oi! erosion(in ccor! nce e..ecti/e height n! llow ble m 2imum non erosi/e !isch rge s possible recommen!e! b3 F3G.

; he time reCuire! to !eli/er the !esire! !epth o. w ter in to e ch .urrow w s c lcul te! using the eCu tion recommen!e! b3 F1BG:

$$t = \frac{1 P^8 W 8 I}{3"08C}$$
(2)

where; 1_p is !epth o. w ter pplie! (cm)(t is pplic tion time (hr)(l is .low length (m) C is .low r te ($l s^{-1}$) n! w is .urrow sp cing (m).

2.4. Net and Gross Irrigation Water Requirement

* bb ge () c n .lourish un!er irrig tion in the lower ltitu!es. 'rrig tion is st n! r! pr ctice in /eget ble crop li:e c bb ge. < ter nee!e! per irrig tion w s !etermine! s net !epth o. irrig tion w ter th t is reCuire! consumpti/el3 .or crop pro!uction. 't is the mount o. irrig tion w ter reCuire! to bring the soil moisture le/el in the e..ecti/e root ?one to .iel! c p cit3. ;hus it w s the !i..erence between the .iel! c p cit3 n! the soil moisture content in the root ?one be.ore st rting irrig tion. ;his is obt ine! b3 the rel tion gi/en below;

$$r_{\text{net}} = \frac{(0.c - 0i)P_{\text{bs}} 1 r}{100}$$
 (3)

where; 'net is the net mount o. w ter to be pplie! !uring irrig tion (cm)(0_{c} is the moisture content t.iel! c p cit3 in the root ?one b3 /olume (A)(0_{i} is .iel! moisture content be.ore irrig tion in the root ?one b3 /olume (A) i.e. 0-30 n! 30-"0 cm !epth(1_{r} is the !epth o. the root ?one (cm) rQ "0 cm n! bul: !ensit3 o. the soil in the root ?one (g cm⁻³). Eross !epth o. irrig tion w ter ('gr) eCu ls the net irrig tion !epth ('n) !i/i!e! b3 the pplic tion e..icienc3 (+). ;he .ollowing eCu tion w s use! to compute gross irrig tion w ter reCuirement.

$$'_{gr} = \frac{'_n}{+} \tag{4}$$

; he .iel! w ter pplic tion e..icienc3 .or sur. ce .urrow irrig tion is norm II3 t :en s "0A.

< ter s /ing with %)' n!))' comp re! to *)' w s c lcul te! s:

$$< 0(A) = \frac{(<*)^{\circ} - < (-)^{\circ} + (-)^{\circ}}{<*)^{\circ}} 8100$$
 (B)

where <0 is w ters $/e! <_{*)'}$ is tot I w ter use! (mm) with the *)' metho! n! <% is tot I w ter use! (mm) with the %)' n!))' metho! n! mount o. w ter pplie! .or %)' n!))' w s eCu I.

, ercent o. 3iel! incre se/!ecre se in 3iel! (A) comp re! to the %)' or))' metho! w s compute! s

$$R_{1}(A) = \frac{(R_{1}) - R_{1}(A)}{R_{1}} 8100 \qquad (")$$

where R_{1} is percent 3iel! incre se or !ecre se(R_{0} , n! R_{1} , re 3iel!s (:gh ⁻¹) obt ine! with the n)'/)' n! *)' metho!s(respecti/el3.

2.5. Water Productivity

(1) *rop w ter use e..icienc3 (* < 4+): *rop w ter use
e..icienc3 (* < 4+) or so-c lle! in other re.erences crop w ter pro!ucti/it3 (* < ,) w s compute! b3 !i/i!ing crop 3iel! b3 consumpti/e w ter use (net irrig tion).

*
$$< 4 + = \frac{R}{\text{*onsumti/e w ter pplie! to the .iel! (m3)}}$$
 (7)

(2) 'rrig tion w ter use e..icienc3 (' < 4+): ' < 4+ (:g m⁻³) w s !etermine! b3 !i/i!ing the 3iel! to se son l e/ potr nspir tion n! tot I se son I irrig tion w ter pplie!(n! c lcul te! b3 the .ollowing eCu tion:

$$<4+=rac{R}{; \text{ ot I w ter pplie! to the .iel! (m^3)}}$$
 (#)

where < 4+ is w ter use e...icienc3 (:g m⁻³)(R is ctu l 3iel! (:g)(n! tot l (gross irrig tion) w ter pplie! to the ...iel! (m³) w s !etermine .rom +;c is se son l crop e/ potr nspir tion .rom the croppe! re .

(3) +conomic I w ter pro!ucti/it3: (+; @ m⁻³) rel tes the economic bene.its per unit o. w ter use!. 't w s c lcul te! b3:

$$= \frac{\$utput (/ lue)}{; ot \ I \quad mount \ o. \ w \ ter \ consume! \ (m^3)}$$
(I)

where; < p is the economic w ter pro!ucti/it3 in +; @ m⁻³(out-put is the pro!uct o. m r:et ble 3iel! n! m r:et price in +; @(n! w ter consume! in m³. +; @ is +thiopi n +; @

2.6. Cost Benefit Ratio and Net Return Analysis

; he cost n! bene.it o. e ch tre tment w s n l3?e! p rti ll3(3iel! n! economic ! t were compute! to comp re the !/ nt ge o. !i..erent .urrow irrig tion metho!s n! pplic tion le/els o. e ch tre tment. ; he tot I cost m inl3 inclu!es oper ting n! / ri ble costs. \$per ting costs (I bor(I n! prep r tion(see!s(n! .ertili?ers n! implement costs) were b se! on the pl nte! re . > ri ble costs !epen!e! on the number o. irrig tion e/ents(I bour n! w ter unit price. ; he in!igenous . rmers in the stu!3 re !o not p 3 .or irrig tion w ter o. their . rms. ; here.ore ssumption w s m !e .or the costs o. w ter unit price which w s estim te! to be $12.B + ; @ m^{-3}$. ; he m n-! 3 l bor cost w s $B0 + ; @ ! 3^{-1}$ to irrig te .iel!. ; ot l w ter cost .or se son w s c lcul te! b3 multipl3ing the w ter unit price b3 the tot l mount o. irrig tion w ter reCuire! .or c bb ge crop. Eross re/enue h s been c lcul te! b3 multipl3ing tot l 3iel! in :g h ⁻¹ o. c bb ge m r:et price per :ilogr m. ; he . rm-g te price .or c bb ge in this stu!3 w s $2.B + ; @ :g^{-1}$ (/er ge! loc l price). 7 et return (7 &) n! bene.it-cost r tio (@ * &) !ue to irrig tion were c lcul te! ccor!ing to F1"G s .ollows:

; he bene.it cost r tio (@*&) in +; @ or +; @ me sures the incre se in net return (7 &) which w s gener te! b3 tot I cost e2pen!iture (; *):

$$@ * \& = \frac{7 \&}{: *}$$
(11)

; he mount o. w ter s /e! (<0) per hect re o. I n! w s obt ine! b3 subtr cting con/ection I .urrow irrig tion with 100A + ;c pplic tion le/els s control .or e ch tre tment. ; he net return .or !!ition I re (7&%) .or h r/este! m r:et ble 3iel! w s c lcul te! s the !i..erence between the sum o. the cost o. I bor .or inter ction o. irrig tion metho!s n! pplic tion le/els(the cost o. w ter th t w s s /e! .rom pplic tion le/els(n! the re/enue lost !ue to 3iel! !ecre ses resulting .rom this . ctor protocol is gi/en F176 s;

$$7 \&\% Q (E8=0 S *8 < 0) M, 8R=$$
 (12)

where $(7\&\% \text{ is } 7\text{ et returns o. }!!\text{ ition I re } (+;@)(=0 \text{ is } = \text{ bor s } /e! \text{ .rom irrig tion s3stem } (\text{m n per } ! 3)(<0 \text{ is } >\text{olume o. w ter s } /e! (m^3 h^{-1})(\text{ R= is Riel! loss } (:gh^{-1})(* \text{ is } 4\text{ nit price per m}^3 \text{ o. w ter}(, \text{ is } 4\text{ nit price per :ilogr m o. } c \text{ bb ge 3iel! n! E is } 4\text{ nit cost o. I bor per irrig tion per h}$

; he e2tr irrig ble l n! re which coul! be ser/e! b3 the irrig tion w ter s /e! per hect re w s !etermine! b3 !i/i!ing the tot l s /e! w ter per hect res o. l n! to be irrig te!(the e2tr l n! w s obt ine! b3 multipl3ing the ch nge in net income b3 the re s /e! F176.

2.7. Statistical Analysis

%II me sure! / ri bles were subjecte! to n I3sis o. / ri nce ppropri te .or &*@1. ;he ! t were n I3?e! using Eenst t $1B^{th}$ e!ition st tistic I so.tw re. ;he me n sep r tion w s m !e using .isher protecte! list signi.ic nt !i..erence (=01) metho!.

3. Result and Discussion

3.1. Water Productivity

3.1.1. Crop Water Use Efficiency (CWUE)

; he outcome o. st tistic I n I3sis in!ic tes th t * < 4 + / rie! highl3 signi.ic ntl3 (,D0.01) in.luence! b3 both irrig tion metho!s ('9s) n! pplic tion le/els (%=s). ; he highest / lue pro!uce! w s 2I.B3 :g m⁻³ b3 %)'(n! the lowest

w s recor!e! b3 *)' s 2".4# :g m⁻³(but when comp re! %)' with))' there were no signi.ic nt !i..erence between them. %pplic tion le/els show th t(* < 4 + signi.ic ntl3 incre se! when irrig tion mount or !epth !ecre se!. 0imil rl3 the result .or %=s shows th t(the highest / lue o. crop w ter use e..icienc3 o. 3B.I3 :g m⁻³ w s obt ine! b3 %=s o. BOA +;c .ollowe! b3 7BA +;c s 2".I0 :g m⁻³ n! 22.07 :g m⁻³ t 100A +;c correspon!ingl3 (; ble 1).

't is lso e/i!ent th t(t e ch irrig tion metho!s(the * < 4 + incre se! with !ecre sing the w ter pplic tion le/el(comp r ti/el3(when goes .rom 100A +;c to BOA o. +;c %=s the / lue obser/e! s 13.#" :g m⁻³ !i..erence (; ble 1).

Table 1	Ι.
---------	----

Irrigation method	CWUE	Application level	CWUE
%)'	2I.B3	100 A +;c	22.07 ^c
))'	2#.10	7B A +;c	2".I0 ^b
*)'	2".4# ^b	BO A +;c	3B.I3
=01 (BA)	1.232		1.232

* < 4+ (:g m³): *rop w ter use e..icienc3(=01: =e st signi.ic nce !i..erence(7 ote: me ns .ollowe! b3 the s me in column h /e not signi.ic nt !i..erence

3.1.2. Irrigation Water Use Efficiency (IWUE)

; he n I3sis o. / ri nce(showe! th t '<4+ were highl3 signi.ic ntl3 (,D0.01) in.luence! b3 both '9s n! %=s. ; he obser/ tion .rom ; ble 2 opine! th t irrig tion w ter use e..icienc3 w s !ecre se! signi.ic ntl3 .rom 17.72 to 1B.#I :g $m^{-3}(.or \%)$ ' n! *)' respecti/el3(but st tistic II3 me n o. '<4+ pro!uce! b3 %)' n!))' were not signi.ic ntl3 !i..erent. '<4+ w s Iso ..ecte! b3 pplic tion le/els(n! the highest / lue w s recor!e! s 21.B" :g m^{-3} b3 BOA +;c .ollowe! b3 7BA +;c (1".14 :g m^{-3})(where s 13.24 :g m^{-3} t 100A +;c !e.icit le/els in !ecre sing or!er.

; his result in!ic tes * < 4+ n! ' < 4+ rel te! to the mount o. w ter supplie! h s in/erse rel tion with 3iel! obt ine! s.ormul te! pre/iousl3 in eCu tion 7 n! #.

Table 2.

Irrigation method	IWUE	Application level	IWUE
%)'	17.72	100 A +;c	13.24 ^c
))'	17.34	7B A +;c	1".14 ^b
*)'	1B.#I ^b	B0 A +;c	21.B"
=01 (BA)	0.731		0.731

' < 4+: (:g m⁻³) 'rrig tion w ter use e..icienc3(+;c: +/ potr nspir tion o. crop(=01: =e st signi.ic nce !i..erence(7 ote: me ns .ollowe! b3 the s me in column re not signi.ic ntl3 !i..erent

3.1.3. Economic Water Productivity (EWP)

; he n l3sis o. / ri nce re/e le! th t economic w ter pro!ucti/it3 w s highl3 signi.ic ntl3 (,D0.01) in.luence! b3 both irrig tion metho!s ('9s) n! pplic tion le/els (%=s). ; he result in!ic tes th t me n m 2imum economic w ter pro!ucti/it3 / lue.or %)' obt ine! s "4.2" +; @ m³(which h ! no signi.ic nt !i..erent .rom .i2e! .urrow irrig tion metho!s n! the me n minimum +< , w s recor!e! b3 *)' s B7."B +; @ m³ (; ble 3).

Table 3.EI RPP

3.2.2. Effect of Irrigation Methods and Application Levels on Water and Land Productivity

; he result in!ic te! th t w ter s /e! .rom tre tment combin tion o. %)' n!))' with 100A +; c(7BA n! B0A +; c le/els were 1"."7 A(37.BA n! B#.33A o. tot l net /olume o. irrig tion w ter pplie!. < here s *)' with 7BA n! B0A pplic tion obt ine! 2BA n! B0A respecti/el3.

)' with 100A +;c pplic tion !epth recor!e! m 2imum 3iel! bec use this tre tment recei/e! .ull crop w ter reCuirement(hence no 3iel! re!uction obser/e!. < here s %)' n!))' with 100A +;c 3iel! re!uction w s less th n 10A(which w s in!ic te! s I.4 n! 7.BA(respecti/el3 when comp re! with no w ter stresse! ()' with 100A +;c). - owe/er %)' n!))' with 100A %=s were s /e! 1"."7A w ter .rom e ch tre tment (; ble B)(which coul! irrig te bout 0.2 h (; ble ").

@ut un!er plot o. 7BA + ;c pplic tion !epth or 2BA stresse! tre tment o. %)'())' n! *)' were in!ic te! th t signi.ic nt 3iel! re!uction s 1".3A(21.2A n! I.7A respecti/el3. %s presente! in ; ble B tot I mount o. net /olume o. irrig tion w ter s 37.BA (1BB3.40 m³) .rom %)'())' o. e ch tre tment n! 2BA (103B."0 m³).rom *)' w s s /e!. - ence w ter s /e! .rom %)'())' n! *)' with 7BA %=s coul! irrig te 27A (1.B3 h) o. tot I !!ition I re (; ble ").; he result in!ic tes c bb ge per.orm nce un!er this !e.icit le/el w s better in con/ection I .urrow irrig tion (*)') .ollowe! b3 %)' n!))' with 7BA %=s correspon!ingl3.

%ccor!ingl3 .or tre tments with BOA +;c pplic tion le/el(3iel! re!uction w s higher when comp re! to 7BA +;c s presente! in (; ble B). ;he 3iel! re!uction in ccor! nce to pplic tion le/el w s incre se! s 22.0(24.3 n! 2".1A b3 *)'(%)' n!))' with BOA +;c respecti/el3. ;his is bec use the c bb ge stresse! b3 h l. (BOA) net crop w ter reCuirement which resulte! in m 2imum 3iel! re!uction comp re! to norm l or .ull w ter pplic tion. - owe/er "" A o. w ter s /e! coul! irrig te tot l !!ition l re o. 3.# h . ;his cle rl3 shows th t 3iel! re!uction resulte! .rom both irrig tion metho!s n! pplic tion le/els coul! be compens te! b3 !!ition l irrig ble re to be culti/ te!.)rom economic point o. /iew 3iel! obt ine! .rom tot l !!ition l irrig ble re (B.73 h) coul! pro!uce 32B.I tons o. m r:et ble c bb ge 3iel! (; ble ").

Treatment combination	Marketable yield (kg ha ⁻¹)	Yield reduction (kg ha ⁻¹)	Yield eduction (%)	$I_n(m^3 ha^{-1})$	Water saved from I _n (m ³ ha ⁻¹)	Water save in (%)
%)'100A+;c	"B304.4	"7"2.2	I.4	34B2.0	" I0.40	1"."7
%)'7BA+;c	"0333.3	11733.3	1".3	2B#I.0	1BB3.40	37.B0
%)'BOA+;c	B4BBB."	17B11.1	24.3	172".0	241".40	B#.33
))'100A+;c	"""BB."	B411.1	7.B	34B2.0	"I0.40	1"."7
))'7BA+;c	B"#11.1	1B2BB."	21.2	2B#I.0	1BB3.40	37.B0
))'BOA+;c	B32BB."	1##11.1	2".1	172".0	241".40	B#.33
*)'100A+;c	720"".7	0.0	0.0	4142.4	0.00	0.00
*)'7BA +;c	" "377.#	B"##.I	7.I	310".#	103B."0	2B.00
*)'BOA +;c	B"200.0	1B#"".7	22.0	2071.2	2071.20	B0.00

3.3. Cost Benefit and Economic Analysis

Table 5.

7et return .rom !!ition l irrig ble re !ue to w ter s /e! .rom irrig tion metho!s n! pplic tion le/els o. c bb ge pro!uction estim te! ccor!ing to w ter pplie! .or e ch tre tment. ; ble " in!ic tes th t the net return (7&) compute! .rom the w ter n! l bor s /e! o. e ch tre tment n! !et il c lcul tion o. net income or return g ine! .rom !!ition l irrig ble re o. e ch tre tment re presente!. ;he result in!ic tes th t the highest net return obser/e! in ltern ti/e irrig tion metho! with BOA + ;c pplic tion le/el n! the lowest net return w s obt ine! .rom *)' with 7BA + ;cpplic tion le/el. <ith the s me /ein(*)' with 7BA + ;cpplic tion le/el resulte! in lowest w ter s /e! n! irrig ble re comp re! to %)' n!))' o. the s me %=s. 't cle rl3

Table	6.	

seen th t the / lue o. net return gener te! w s in.luence! not onl3 b3 w ter pplie! but lso .urrow irrig tion metho!s.

\$n the other h n!(*)' with 100A + ;c w s use! scontrol .or II tre tment. ;he result shows the w ter s /e! .rom %)' n!))' with 100A + ;c or with .ull irrig tion onl3 .oun! out .rom the two other .urrows rem in !r3 until the ne2t irrig tion sche!ule .or %)' n!))' with their pplic tion. %ccor!ingl3 the !!ition I re to be irrig te! o. e ch tre tment w s c lcul te! b se! on the mount o. w ter pplie! n! the r tio o. tot I w ter pplie! .or non-stresse! tre tment (*)' with 100A + ;c) to stresse! tre tments. =i:ewise(the tot I !!ition I re obt ine! w s con/erte! to hect re .rom e ch tre tment s bout B.73 h (which coul! be irrig te! b3 tot I w ter s /e! o. 20712.02 m^3 per hect re with tot II bors /e! show in ; ble ".

Treatment	MHY *100	I _g (*100)	WS (m ³⁾ *100	A. A irrig. by WS	YG of A. A (*100)	G* LS (*100)	C*W S (*100)	TC(*100)	TR(*100)	NR due to AA *100
;1	"B.30	B7.B3	11.B1	0.20	130."1	B.#	143.#	1"7.7	32 ".B	1B#.#
;2	"0.33	43.1 B	2B.#I	0."0	3"2.00	13.1	323."	311.0	I 0B.0	B14.0
;3	B4.B"	2#.77	40.27	1.40	7"3.7#	20.4	B03.4	"B0.4	1101.4	12BI.1
;4	"" <u>.</u> ""	B7.B3	11.B1	0.20	133.31	B.#	143.#	1"7.7	333.3	1"B.B
;в	B".#1	43.1 B	2B.#I	0."0	340.#7	13.1	323."	311.0	#B2.2	4"1.2
; "	B3.2"	2#.77	40.27	1.40	74B.B#	20.4	B03.4	"B0.4	1#"3.I	1213."

..

12I 5em | 7ur - ssene n! 9u:erem ; h 0ei!: *omp r ti/e ,er.orm nce +/ lu tion o. %Itern te n! *on/ection |)urrow 'rrig tion un!er 1i..erent < ter %pplic tion =e/el on * bb ge < ter 4se +..icienc3 n! +conomic %n l3sis

Treatment	MHY *100	I _g (*100)	WS (m ³⁾ *100	A. A irrig. by WS	YG of A. A (*100)	G* LS (*100)	C*W S (*100)	TC(*100)	TR(*100)	NR due to AA *100
;7	72.07	"I.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
;#	"".3#	B1.7#	17.2"	0.33	221.2"	#.7	21B.#	2B4."	BB 3.1	2I#.B
;1	B".20	34.B2	34.B2	1.00	B"2.00	17.B	431 .B	B3I.4	140B.0	#"B."
;ot I			207.12	B. 73	32BI.40	104.I	2B#I.0	3212.2	#14#.B	413".3

7 ote: 'g: Eross irrig tion per h in m³(%.%: %!! ition I re irrig te!(9 - R: 9 r:et ble he ! 3iel! in ton h $^{-1}(=0:=$ bor s /e! .rom irrig tion s3stem(< 0: >olume o. w ter s /e! in m³ per h (RE: Riel! g ine! .rom %.% in :g h $^{-1}(*: 4nit price per m³ o. w ter (*Q12.B +; @) n! ,: 4nit price per :g o. c bb ge he ! (,Q2.B +; @: g^{-1})(E:= bor per irrig tion per h (EQB0 +; @! 3^{-1})(; &: ;ot I return in +; @ h <math>^{-1}(*: 4nit price per :g o. c bb ge he : (, or the second second$

)in II3 ; ble 7 in!ic te! th t @*& (bene.it cost r tio) o. c bb ge w s compute! .or e ch tre tment combin tion s the r tio o. 3iel! e rne! to the cost e2pen!e!. %ccor!ingl3(tre tments))'(%)' n! *)' with 100A +;c w ter pplic tion le/el h ! the lowest @*& s 0.II(0.I n! 0.#2 respecti/el3. @ec use those tre tments cost o. pro!uction higher s comp re! to 3iel! obt ine!.

9 oreo/er tre tment combin tion o. 7BA %=s(the highest @*& w s tt ine! b3 %)' n! the lowest w s recor!e! un!er *)'(s presente! in ; ble 7. ; he other rem ining tre tments were occupie! in between I rgest n! the sm llest / lue o.

Table 7.

@*&. ; his implie! th t the w ter s /e! with incorpor tion o. both combine! . ctor o. ('9 s n! %=s) h ! n in!ic tor .or n l3sis o. @*& .rom !!ition ll n! / il ble.

; here.ore the net re!uction in bene.it !ue to 3iel! re!uction o. e ch tre tment w s compens te! b3 net bene.it g ine! .rom 3iel! obt ine! b3 !!ition I re culti/ te! with I bour n! w ter s /e! with the s me criteri n! con!ition !etermine!. %mong !i..erent irrig tion tre tments(Itern te .urrow irrig tion (%)' with 7BA) h ! the better 3iel! n! the optimum @*& when comp re! with))' n! *)' with the s me pplic tion.

Freatment	Water applied m ³ ha ⁻¹	Cost of labor and water (VC)	Operation cost (FC)	Total cost (TC) in ETB ha ⁻¹	Marketable yield(kg ha ⁻¹)	Gross Revenues (GR) in ETB	Net Return (NR) in ETB	BCR
;1	B7B3.3	74#30.03	I040.0	#3#70.0	"B304.44	1"32"1.1	71311.1	0.14
;2	431B.0	B"122.B2	1040.0	"B1"2.B	"0333.33	1B0#33.3	#B"70.#	1.31
;3	2#7".7	3741B.01	1040.0	4"4BB.0	B4BBB.B"	13"3##.I	#II33.I	1.I4
; 4	B7B3.3	74#30.03	1040.0	#3#70.0	"""BB.B"	1"""3#.I	#27"#.I	0.11
; B	431B.0	B"122.B2	1040.0	"B1"2.B	B"#11.11	142027.#	7"#"B.3	1.1#
; "	2#7".7	3741B.01	1040.0	4"4BB.0	B32BB.B"	13313#.I	#""#3.I	1.#7
;7	" 104.0	#171".04	1040.0	I##3".0	720""."7	1#01"".7	#1330."	0.#2
;#	B17#.0	"7347.03	1040.0	7"3#7.0	" "377.7#	1"BI44.4	#IBB7.4	1.17
;1	34B2.0	44#I#.02	1040.0	B3I3#.0	B"200.00	140B00	#"B"2.0	1."0

@ *&: @ene.it cost r tio(>*: > ri ble cost (+; @ h ⁻¹) n!)*:)i2e! cost (+; @ h ⁻¹)(; (; 2 n! ; 3 .or pplic tion le/el o. (%)') with 100A(7BA n! BOA +; c respecti/el3(; 4(; B n! ; - .or pplic tion le/el o. ())') with 100A(7BA n! BOA +; c respecti/el3:; 7(; # n! ; I .or pplic tion le/el o. (*)') with 100A(7BA n! BOA +; c respecti/el3(; +; @: +thiopi n @irr (- int the home currenc3 up to the p per o. completion is 1 +; @ Q 0.04B 40 T)

4. Discussion

4.1. Water Productivity

rop w ter use e...icienc3 (< 4 +): *omp ring the results o. the three irrig tion metho!s .rom the point o. crop w ter use e..icienc3(it cle rl3 con.irme! th t(Itern te .urrow irrig tion .ollowe! b3 .i2e! .urrow irrig tion n! con/ention I .urrow irrig tion h ! more bene.ici I use o. w ter respecti/el3.; his result re/e le! th t incre sing w ter pplic tion !ecre ses w ter use e..icienc3 o. crop. ;he results gree with F1#6 F1I6 who reporte! th t * < 4 + / lues !ecre se! with incre sing w ter use. \$n the other h n!(.or Il irrig tion metho!s(s pplic tion le/els incre se! the * < 4 + !ecre ses(this pro/e th t s !epth o. pplic tion incre se w ter lose b3 1ee percol tion(sur. ce runo.. n! e/ por tion incre se r ther th n w ter utili?e! b3 crop. %ccor!ingl3 F20G reporte!(th t crop w ter use e..icienc3 .or Itern te .urrow irrig tion subst nti II3 incre se! comp re! with con/ention I .urrow irrig tion .or corn.

'rrig tion w ter use e...icienc3 (' < 4 +): ; he result reporte!

b3 F216 un!er controlle! en/ironment stu!3 with m i?e(p rti I root ?one irrig tion pplie! t the jointing st ge re!uce! w ter consumption b3 12A n! enh nce! < 4+ b3 12A. 0ome uthor con.irme! th t signi.ic nt impro/ements in '<4+ h /e been ssoci te! with %)' F226 n! F236. 0imil rl3 F246 !emonstr te! th t '<4+ incre se! with !ecre se in irrig tion w ter. 9 oreo/er F2B6 .or Ue!! grown pot to showe! th t comp re! with)' (.ull irrig tion)(,&1 (p rti I root !r3ing) tre tment s /e! 30A o. w ter n! incre se! w ter use e..icienc3. 'n contr st to this stu!3 F2"6 .oun! th t '<4+ w s highest in the .ull irrig te! tre tment. 'n gener l(!i..erences between this stu!3 n! bo/e cite! stu!ies m 3 be !ue to !i..erences in the pl nt / riet3 use!(gro-clim tic con!itions o. the region n! culti/ tion perio!s.

+conomic w ter pro!ucti/it3 (+< ,): ;he re son behin! this result is th t(economic w ter pro!ucti/it3 relies on the r tio o. 3iel! con/erte! to / lue (c sh) o. m r:et ble 3iel! obt ine! b3 the mount o. w ter pplie! on /olume b sis. ;hus BOA +;c h ! le st w ter pplic tion !epth n! Iso rel ti/el3 lower 3iel! pro!uce!(this resulte! in superior economic w ter pro!ucti/it3. ;he re/iewe! liter ture Iso con.irme! the s me i!e o. w ter pro!ucti/it3 is consi!er bl3 incre se! b3 using %, &1 (Itern ti/e p rti I root !r3ing) on !i..erent crops F2BG F276. F2#G Iso reporte! th t ,&1 signi.ic ntl3 re!uce! 3iel! b3 24A(while <, (w ter pro!ucti/it3) incre se! b3 B2A comp re! with the)' (.ull irrig tion). F2IG reporte! th t <, un!er !e.icit irrig tion r nge! .rom minimum o. 1" :g m⁻³ in)' to m 2imum o. 21.B :g m⁻³ in ,&1 with BOA pplic tion le/el tre tments.

4.2. Significance of Irrigation Method and Application Levels on Cabbage Yield Optimization and Net Return

OigniUc nce o. &esults: ;his stu!3 presents e2plicitl3 in/estig te! w ter pro!ucti/it3 o. c bb ge un!er !i..erent .urrow irrig tion metho!s n! pplic tion le/els. - ence(this le !s or !/ nces to Cu li.3 best .urrow irrig tion s3stems(while pro/i!ing .r mewor: .or ssessing potenti l .uture tr nsitions o. .urrow irrig tion metho!s(s li:el3 re!ucing w ter reCuirement in /iew o. pro!ucing optimum 3iel! to meet incre sing in .oo! !em n! t w ter sc rce re especi II3 .or !e/eloping countr3. Eener II3(it h s been ssume! th t economic n! gronomic control or w ter m n gements b3 impro/ing e2isting sur. ce irrig tion metho!s inclu!ing optimum pplic tion le/els with mo!est 3iel! re!uction c n impro/e net returns .rom !!ition lirrig ble re .

)rom sust in bilit3 perspecti/e(the prim r3 objecti/e o. this stu!3 whether .urrow irrig tion o/er!r .t the re!uction o. irrig tion w ter consumption to m 2imi?e culti/ tion l n! with little 3iel! loses when comp re! with cultur l or norm l pr ctice n! optimi?e w ter pro!ucti/it3. < ter s /e! through impro/e! irrig tion s3stems coul! llow .or n e2p nsion o. culti/ tion l n! n! incre se crop pro!uction in w ter limite! re .) rmersV !ecisions re o.ten !ri/en b3 m 2imi?ing their return n! r rel3 b3 en/ironment l concerns; i. the3 pursue e..orts to s /e w ter(!o the3 o.ten use it to e2p n! their irrig te! re s or shi.t to higher / lue crops(r ther th n losing w ter lloc tion F306 F316.

ost bene.it n! +conomic n l3sis: -ence b3 using o. ppropri te irrig tion metho!s n! pplic tion le/els were better .or higher 3iel! n! coul! be economic ll3 ttr cti/e to incre se crop pro!uction n! pro!ucti/it3 t w ter sc rce or limite! w ter n! !rought susceptible re s. Ourming up in terms o. 7 & n! @& Itern ti/e .urrow irrig tion show better when comp re! with))' n! *)' with s3non3mous pplic tion le/el. ;he report gree! n! sh re! with F3"6 F376 F3#6 whom recommen! th t mongst the &1' (regul te! !e.icit irrig tion) ppro ches(Itern te p rti I root-?one irrig tion h s been .oun! to be most e..ecti/e n! e..icient in s /ing w ter n! impro/ing < 4+ while m int ining crop pro!ucti/it3.

5. Conclusion

; his stu!3 !/oc tes th t the techniCue o. Itern te .urrow irrig tions were subst nti II3 s /e! w ter th n con/ection I .urrow irrig tion metho! in .iel! con!itions un!er w ter pplic tion le/el.)rom the result w ter s /e! Itern te .urrow (%)' n!))') irrig tion with BOA +;c %=s coul! s /e B#.33A o. tot I net /olume o. irrig tion w ter pplie!. < ith respect to ph3sic I w ter use e..icienc3 n! economic w ter pro!ucti/it3(summ ri?e! s .ollow: 9 e n m 2imum n! minimum * < 4 + (' < 4 + n! + , <were recor!e! b3 %)' n! *)' respecti/el3.)or %=s crop n! irrig tion w ter use e...icienc3 n! + <, were incre sing .rom 100A + ;c (.ull irrig tion) to B0A + ;c. 'n the c se o. net return (7&) n! bene.it cost r tio (@*&)inter ction o. (n! *)')(un!er 100A + ;c(the highest w spro!uce! b3 Itern te .urrow (%)' n!))') irrig tion higher th n *)'(un!er II w ter pplic tion !epth.)in II3 the .in!ing in!orses th t . rmers c n pr ctice either Itern te .urrow irrig tion (%)' n!))') with o. 100A pplic tion le/el or *)' with 7BA +; c s best option(this w s i!enti.ie! s negligible 3iel! re!uction o. less th n 10A s comp re! to e/er3 or con/ection I .urrow irrig tion with .ull w ter pplic tion. %nother Itern ti/e option w s obser/e! %)' metho! in!ic tes best @*& which pre.erenti II3 selecte! t 100A n! 7BA !e.icit le/el o/er))' with the s me !e.icit le/el.

References

- F16 9 orison(5. '. =.(7. &. @ :er(,. 9. 9 ulline u2(n! <. 5. 1 /ies. 200#. 'mpro/ing w ter use in crop pro!uction. ,hil. ;r ns. &o3 | 0oc. @ 3"3: "3IM"B#.
- F26 +/ ns(&. E. n! +. 5. 0 !ler. 200#. 9 etho !s n! technologies to impro/e e..icienc3 o. w ter use. < ter &esources &es. 44: 1M1B.
- F36)oo! n! %griculture \$rg ni? tion o. the 4nite! 7 tions.
 2002. *rops n! !rops: 9 :ing the best use o. w ter .or griculture 7 tur I &esources +n/iron. 1ept.()%\$(&om.
- F4G ;iercelin(5. &.(>i! I(%.(200". ;r ite\!V'rrig tion(X 2n! +!. , ris()r nce.
- FBG @urt(*. 9.(*lemmens(%. 5.(0trel:o..(;. 0.(0olomon(J. -.(@liesner(&. 1.(-r!3(=.%.(-owell(;.%.(+isenh uer(1.+.(1117. 'rrig tion per.orm nce me sures: e..icienc3 n! uni.ormit3. 5. 'rrig. 1r in. +ng. 123(423M442.
- F"6 %mp s(>.(@ It s(+.(200I. \$ptimi? tion o. the .urrow irrig tion e..icienc3. Elob. 7+0; 5. 11 (4)(B""MB74.
- F76
 1 u(;. 0.(J ng(0. Y.(0un(5. 0.(Yh ng(Z. R.(Yh ng(5. -.(2010. %n impro/e! w ter use e..icienc3 o. cere Is un!er tempor I n! sp ti I !e.icit irrig tion in north *hin . %gric. < ter 9 n g. I7 (1)(""M74.</td>
- F#G orst(9. E.(0h mut lo/(0. 0.(,ereir (=. 0.(Eonc l/es(5. 9.(200B.)iel! ssessment o. the w ter s /ing potenti l with .urrow irrig tion in)erg n (%r l 0e b sin. %gric. < ter 9 n g. 77 (1M3)(210M231.</p>
- FIG 9 shori(%. 0.(2013. +/ lu tion o. the per.orm nce o. the ltern te .urrow irrig tion un!er clim tic con!itions o. 0in!h.
 'n: 9. +. ; hesis. 0in!h %griculture 4ni/ersit3(; n!oj m(, :ist n 9 itchell(5. ,.(0henn n(*.(Er tt n(0. &. [9 3(1. 9.(; om to .ruit 3iel!s n! Cu lit3 un!er w ter !e.icit n! s linit3.5 %mer 0oc ort 0ci(11"(pp. 21B-221(1II1.
- F106 9 itchell(5. ,.(0henn n(*.(Er tt n(0. &. [9 3(1. 9.(;om to .ruit 3iel!s n! Cu lit3 un!er w ter !e.icit n! s linit3. 5 %mer 0oc - ort 0ci(11"(pp. 21B-221(1111.

- 131 5em I 7ur ssene n! 9u:erem ; h 0ei!: *omp r ti/e ,er.orm nce +/ lu tion o. %Itern te n! *on/ection I)urrow 'rrig tion un!er 1i..erent < ter %pplic tion =e/el on * bb ge < ter 4se +..icienc3 n! +conomic %n I3sis
- F116 @ehbou!i n(9. -. [9 ills(;. 9.(1e.icit irrig tion in !eci!uous orch r!s. ort &e/(21(pp. 10B-131(1I17.
- F126 OI tni(%.(Y 3 nib(J.(Y iri (%.(R coubi (0.(0 I/ !orc(&. [,I 3\nc(+.(%ssessing Itern te .urrow str tegies .or pot to t the *her.ech irrig tion !istrict o. ;unisi . @ios3stems +ngineering(10#(2)(pp. 1B4-1"3(2011.
- F136 7 elson(1.5. [%I-J isi(9.9.(%gronomic n! economic e/ lu tion o. / rious .urrow irrig tion str tegies .or corn pro!uction un!er limite! w ter suppl3. 5ourn I o. 0oil n! < ter *onser/ tion(""(2)(pp. 114-120(2011.
- F146 9 ich el(%. 9. 1117. 'rrig tion ; heor3 n! , r ctice. , shur ti , rinters(1elhi.
- F1BG 'sr elsen(\$. <.(n! >. +. nsen. 11#0. 'rrig tion , rinciples n! , r ctices. 5onsen <ile3 n! 0ons('nc. 7ew Ror:(=on!on
- F1"6 =i(%.(+. +neji(=. 1u n(0. 'n n g (n! Y. =i. 200B. 0 /ing irrig tion w ter .or winter whe t.
- F176 orton 1.(11#2., rti I bu!get n I3sis .or on .rm pot to rese rch. ;echnic I in.orm tion bulletin 1". 'ntern tion I pot to center. =im (,eru with phosphorus pplic tion the north *hin pl in. 5ourn I o., I nt 7 utrition 2#: 2001-2010.
- F1#6 Een]ogl n(*.(n! %. R ? r. 1III. ;he e..ects o. !e.icit irrig tions on corn 3iel! n! w ter use e..icienc3. ;ur:ish 5. %gric.)orest. 23: pp 233M241.
- F1IG Yel lem shelemew. 201B. & esponse o. m i?e to !e.icit irrig tion un!er three .urrow irrig tion s3stems in ! mi tulu ri.t / Ile3 *entr I +thiopi . 9. 0*. ;hesis. %lem 3 4ni/ersit3(+thiopi .
- F206 %w ! %b! +I-- lim. 2013. 'mp ct o. Itern te .urrow irrig tion with !i..erent irrig tion inter/ Is on 3iel!(w ter use e..icienc3(n! economic return o. corn. *hile n 5ourn I o. %gricultur I &ese rch 73(2) %pril-5une 2013. ; nt 4 ni/ersit3() cult3 o. %griculture(; nt (+g3pt.
- F216 =i)(*. <ei(). Yh ng(5. Yh ng(9. 7ong(0. J ng. 2010 . < ter-use e..icienc3 n! ph3siologic I responses o. m i?e un!er p rti I root-?one irrig tion. %grc(< ter 9 n g I7: 11B"M11"4. !oi:10.101"/j. gw t.2010.01.024.
- F226 Yh ng(5.(0. J ng(Y. =i ng.(R. Y. , n(,. 0hi(R. -. , n(Y. 0. =i ng(Z. ;. -u(2000. 0oil w ter !istribution(uni.ormit3 n! w ter use e..icienc3 un!er Itern te .urrow irrig tion in ri! re s. 'rrig. 0ci. 1I: 1#1-1I0.
- F236 J ss w @esh w. 2011. +/ lu tion o. Itern te n! surge .low .urrow irrig tion metho!s .or onion pro!uction t humbo(southern +thiopi . 9 sc.thesis(- r m 3 4ni/ersit3(- r m 3
- F246 J irn : -.(0. 1 emir('. ; s(9. * :m :li. 2002. &esponse o. !i..erent irrig tion w ter pplic tions on 3iel! n! growth o. lettuce grown in greenhouse. 5 %gric) c - rr n 4ni. "(1-2)(47-B4.
- F2B6 0h hn ? ri(%.(=iu().(%n!ersen(9. 7.(5 cobsen(0. +.(5ensen(*. &.(2007. +..ects o. p rti I root-?one !r3ing on 3iel!(tuber si?e n! w ter use e..icienc3 in pot to un!er .iel! con!itions.) iel! *rops &ese rch(100: 117-124.
- F2"6 J ! 3".c" %(E'. ;u3lu(R. 4] r(@. ^ :m :. 2004. +..ects o. mulch n! irrig tion w ter mounts on lettuces 3iel!(e/ potr nspir tion(tr nspir tion n! soil e/ por tion in

'sp rt loc tion(;ur:e3. 50urn l o. @iologic l 0cience 4("): 7B1-7BB.

- F276 %hm !i(0. -.(9. 7(%n!ersen().(,I uborg(&. ;.(,oulsen(*. &.(%. &.(5ensen(0ep s:h h(0.(- nsen(2010b. +..ects o. irrig tion str tegies n! soils on .iel! grown pot toes: Riel! n! < ter , ro!ucti/it3. %gricultur I < ter 9 n gement(1 \$' 10.1`01"/j. gw t.2010.07.007.
- F2#G Eu ng-*heng(0.(Yh n-Ru (Y.(7 c(=.(0hu ng-+n (R.(<eng-E ng (Z.(200#. *omp r ti/e e..ects o. !e.icit irrig tion (1') n! p rti I root ?one !r3ing (,&1) on soil w ter !istribution(w ter use(growth n! 3iel! in greenhouse grown hot pepper. 0cienti orticultur e(11I: 11-1".
- F2IG 9 n!e.ro *h I n! Jo:obe </Roh nnes. 201B. +..ect o. irrig tion pplic tion le/els on 3iel! n! w ter pro!ucti/it3 o. !rip irrig te! lettuce (= ctuc s ti/ l.)(Ee!io ?one(southern +thiopi . 'ntern tion I journ I o. b sic n! pplie! sciences /ol. 4. 7o. 4 201B. ,p. 22I-234 (online /ersion / il ble t: www.cr!eep.com)
- F306 ,.ei..er =. n! R. *. =in. 2014. 1 oes e..icient irrig tion technolog3 le ! to re!uce! groun!w ter e2tr ctiona +mpiric l e/i!ence(5. +n/iron. +con. 9 n g. "7(1#IM20#(&oi: 10.101"/j.jeem.2013.12.002(3BI"(3"1B.
- F310 0h h(;. 2014. Eroun!w ter go/ern nce n! irrig te! griculture(;+* b c:groun! p pers no. 1I(;ech. &ep. 1I(Elob I < ter , rtnership ;echnic I *ommittee(0toc:holm(0we!en. ,p. 3"1B.
- F326 =i-Oong ; ng(R n =i(5i nhu Yh ng. 200B. ,h3siologic l n! 3iel! responses o. cotton un!er p rti l root ?one irrig tion.)iel! crop rese rch rticle in press. www.else/ier.com/loc te/.cr.)u: ng 0t tion o. 1 esert +colog3(Zinji ng 'nstitute o. +colog3 n! Eeogr ph3(*hinese %c !em3 o. 0ciences(40-3 0outh @eijing &o !(4 rumCi(Zinji ng #30011(*hin .
- F336 ,r /u: I3 n , nigr hi(7 ren!r 7 th 0 hu. 0 n t n ,r !h n. (2011). +/ Iu ting p rti I root-?one irrig tion n! mulching in o:r (%belmoschus esculentus =.) un!er subhumi! tropic I clim te. 5ourn I o. %griculture n! &ur I 1e/elopment in the ;ropics n! 0ubtropics. >ol. 112 7o. 2 (2011) 1"IM17B.
- F340 0i3 I %. %.(9 shori %. 0(@ristow(J. =.(> n Eenuchten 9. ;h. 201". %Itern te .urrow irrig tion c n r !ic II3 impro/e w ter pro!ucti/it3 o. o:r . %gricultur I < ter 9 n gement. 5ourn I homep ge: www.else/ier.com/loc te/ gw t
- F3B6 1 oorenbos(5. n! %. -. J ss m(117I. Riel! response to w ter. 'rrig tion n! 1r in ge p per 33()% \$(&ome.
- F3"6 utton &5(=o/e3s @& (2011). % p rti I root ?one !r3ing irrig tion str teg3 .or citrus b e..ects on w ter use e..icienc3 n! .ruit ch r cteristics. %grc < ter 9 n g. I#: 14#BM14I". !oi:10.101"/j. gw t.2011.04.010.
- F370 R ct 30 <(1. %.(& mcre?(&.(Eutidrre?(>.(9 res(%.(,os ! s(&.(Nuiro?.((2013) +..ect o. p rti | root-?one !r3ing irrig tion timing on pot to tuber 3iel! n! w ter use e..icienc3. %grc. < ter 9 n g. 123: "BM70. !oi:10.101"/j. gw t.2013.03.001.
- F3#6 R ng N=(). *.(Yh ng(Z. E.(=iu(Y. R.(Ee. (2012b). +..ects o. controlle! Itern te p rti I root-?one !rip irrig tion on pple see!ling morphologic I ch r cteristics n! root h3!r ulic con!ucti/it3. *hin 5 %ppl +co 23: 1233M123I.