Effect of Lime and Different Phosphorus Fertilizer Sources on Barley (Hordeum vulgare L.) Yield and Chemical Properties of Acidic soils of Banja and Gozamen Districts, Western Amhara

Bitewelegn kerebeh^{1*}, Tadele Amare¹, Abrham Awoke¹, Mekuanit Andualem², Kindu Gashu³, Amlaku Alemayehu¹ ¹Adet Agricultural Research Center, P.O.Box.08, Bahir Dar, Ethiopia ²Finoteselam Agricultural Research Sub Center ³Amhara Agricultural Research Institute

*Corresponding author Bitewelegn Kerebeh: bitewkerebih3@gmail.com

Abstract

In acid soils phosphorus reacts with Fe and Al oxides/hydroxides to form insoluble phosphates, hence reducing P availability to plants. Therefore, plant growth is highly impaired in acidic soils due to deficiency of phosphorus in addition to Al toxicity. To this end, a field experiment was carried out to determine the effect of different phosphorous fertilizer levels and lime on the grain yield of barley and chemical properties of acidic soils at Gozamen and Banja districts, western Amhara region, Ethiopia. The experiment had two sets; lime and un-limed which were conducted separately. The treatments include a combination of different phosphorous fertilizer type with eight levels (0, GPAPR 146, 219+ 100 UREA, MOHP 175, 116+100 UREA, NAFAKA 287, 191 + 100 UREA, and NPSZnB 136+100 UREA kg ha-1) and ¹/₄ of exchangeable acidity lime. The experiment was laid in a randomized complete block design with three replications of each. At Gozamen the highest grain yield (2470 kg ha-1) was obtained with the application of lime together with 136 NPSZnB + 100 UREA kg /ha followed by the application of 146 GPAPR + 100 UREA kg ha-1 which recorded a grain yield of 2195 kg ha-1 without lime. At Gozamen the highest net benefits 49914.2 ETBha-1 with marginal rate of return 590.8% and 39746.3 ETB ha-1 with marginal rate of return 292.2% were obtained from the application of 1/4th lime plus 136 NPSZnB + 100 UREA kg /ha and sole use of 146 GPAPR + 100 UREA kg ha-1 respectivly. In the case of Banja district, the application of 146 kg ha-1 GPAPR and 1/4th lime obtained the net benefit of 29893.8ETB ha-1 with marginal rate return of 1483.1% and sole application of 191 kg ha-1 NAKFA+100 kg ha-1 UREA generated 8765.45 ETBha-1 net benefits with marginal rate return of 584.6%. Generally, lime increased soil pH and reduced exchangeable acidity, and increase the availability of phosphorus.

Keywords: Acid soil, Grain yield, Lime, Phosphorus, Soil pH.

Introduction

Barley (*Hordeum vulgare L.*) is a major cereal crop in Ethiopia and accounts for 8% of the total cereal production (Wosene et al., 2015). Barley has a long history of cultivation in Ethiopia as one of the major cereal crops and it is reported to have coincided with the beginning of plow culture (Mulatu et al., 2011). In the highlands of the country, barley is grown in Oromia, Amhara, Tigray, and part of the Southern Nations, Nationalities, and

per

cereal crop after wheat, maize, and rice (Martin et al., 2006). Despite its importance and long history of cultivation in Ethiopia, the productivity of barley is lower than other major cereals. The national average yield of barley is about 2.16 t/ha, compared to 2.74 t/ha for wheatand3.94 t/ha for maize (CSA, 2018). One of the major constraints limiting the productivity of barley is poor soil fertility (Berhane et al., 1996; Tarekegne et al., 1997).

Soil acidity and its problem are common in all regions where precipitation is high enough to leach appreciable amounts of exchangeable bases from the soil surface. Although acidification is a natural process in many soil environments, agricultural practices, environmental pollution, mining and other human activities have aggravated the process (Oguntoyinbo et al., 1996; Curtin and Syers, 2001). Its severity is extremely variable due to the effects of parent materials, landform, vegetation, and climate pattern (Rowell, 1994). Its effects on crop growth are those related to the deficiency of major nutrients and the toxicity of aluminum (Al), manganese (Mn), and hydrogen (H) ions in the soil to plant physiological processes (Mesfin, 2009). In order to secure sustainable crop production and reasonable yield, acidic soils have to be corrected by the addition of agricultural lime to a pH range that is suitable for better yield of crop production (Mesfin, 2009). The beneficial effects of liming soil are neutralization of exchangeable Al, increase Ca, Mg, P, and Mo availability, stimulate microbiological activity in soil; improve the physical structure of soil by clumping together or flocculation, clay into more stable aggregates. Liming raises the soil pH by adding calcium & magnesium to soil and causes the aluminum and manganese to go out from the soil solution back in to precipitate then, solid (nontoxic) chemical forms (Johnston et al., 1986). The lime requirement will vary depending upon the types of soil, the desired change in pH, buffering capacity of the specific soil, type of liming material, and the fineness of texture of the lime material (Birhanu, 2010).

Phosphorus reacts with Fe and Al oxides/hydroxides under acidic conditions to form insoluble phosphates, hence reducing P availability to plants (Kamprath, 1984). Phosphorus deficiency often, therefore, occurs simultaneously with Al³⁺ toxicity in these soils. Efforts to ameliorate the deleterious effects of soil acidity must therefore be accompanied by measures to increase available P in soils. The addition of lime to acid soils has long been widely adopted as, the amelioration strategy for many years to improve crop production which is rarely used in Ethiopia. Application of lime at an appropriate rate brings several chemical and biological changes in the soil which is beneficial or helpful in improving crop yields on acid soils. Adequate liming eliminates soil acidity and toxicity of Al, Mn, and H: improves soil structure (aeration): improves the availability of Ca, P, Mo, and Mg, pH and N₂ Fixation; and reduces the availability of Mn, Zn, Cu, and Fe leaching loss of cations (Fageria and Baligar, 2008). The appropriate combination of lime and P fertilizer is, therefore, an important strategy for improving crop growth in acid soils. There is, however, a scarcity of information on the interactive effects of lime and P fertilizer application on crop performance in western Amhara Ethiopia. Phosphate rock is recommended for application to acid soils where phosphorus is an important limiting nutrient on plant growth. The objective of this study was, therefore, to investigate the interactive effects of lime and P fertilizer on barley grain yield on the selected soil chemical properties under acid soil conditions in Western-Amhara, Ethiopia.

Materials and Methods

Description of Study Area

The study was conducted for three consecutive years during 2015to 2017 main cropping seasons at Banja district, Awi zone, and Gozamen district East Gojjam zone in western

2338m asl in the western Amhara, Ethiopia. The site with lower pH (<5.2) and with no liming history was selected for this study. Some of the selected chemical characteristics of the experimental sites are summarized in Table 1.

	_	_	_				
Location	pH(1:2.5 s	soil	[P	OC%	OM%	Exchangable	Exchangable
	water)		olson](ppm)			acidity	Al
						meq/100gm	meq/100gm
Gozamen	5.1		9.2	1.6	2.82	1.5	0.9
Banja	5.2		11.7	1	1.72	1.9	1

Table 1. Soil chemical properties of the experimental site

Note: P=phosphorus, *OC*=Organic carbon, *OM*=Organic matter

Experimental setup

The experiment was laid out separately in two sets (Lime & un-limed) in a randomized complete block design with three replications of each. Four types of P fertilizer with eight levels (0, GPAPR 146, GPAPR 219, MOHP 116, MOHP 175 NAFAKA 191 NAFAKA 287.5 NPSZnB 132.5 and 100 Urea kg/ha). For limed treatments, $1/4^{th}$ of the recommended lime was uniformly applied in rows by hand every year during planting and thoroughly incorporated in the soil. Lime requirement of the soil was calculated based on its exchangeable acidity (Al³⁺ plus H¹⁺) adapted from (Kamprath, 1984). The experimental plots were kept permanent to observe the residual effects of phosphorous and lime application over years. The entire dose of phosphorous was applied at planting, while the recommended N rate of 46 kg/ha was applied in split, half at sowing, and the remaining half side dressed at tillering stage of barley. Gross plot sizes were3 m × 4m and net plot sizes 3 m × 3.6m for both districts. Food barley variety BH-1307 was used as a test crop in both districts.

Soil sampling

Before planting and application of lime, composite soil samples were taken from the experimental site using a soil auger from 0-20 cm soil depth. At harvesting, soil samples from each treatment were taken and independently analyzed. Soil samples were air-dried under shade, grounded by mortar & pestle, and sieved to pass through 2 mm mesh for further chemical analysis.

Soil analysis

The soil pH was determined using glass electrode pH meter in 1:2.5 soils to water ratio volume and exchangeable acidity (Al^{+3} and H^{+}) were extracted with KCl solutions using the

(Keeney et al 1982). Available phosphorous was determined by (Olsen & Sommer, 1982). Soil organic carbon (SOC) was determined following the wet digestion method used by Walkley and Black (Van Reeuwijk, 1992)

Agronomic Data Collection and Interpretation

Dry biomass and grain yield data were collected and analyzed using the analytical procedure of SAS 9.2 version (SAS, 2008). In a condition where ANOVA is significant, the treatment means were compared using the Least Significance Difference test (LSD).

Economic Analysis of Treatment

Partial budget analysis of treatments was done according to CIMMYT (1988). The mean grain yield data of barley which was produced by each treatment over three experimental years (2015 and 2017) were used to do the partial budget analysis. The mean grain yield data were adjusted down by 10% to minimize the yield gap that may occur due to plot management differences by researchers and farmers (CIMMYT, 1988). The average prices of relevant data which were needed to do the partial budget analysis were collected from different sources. Thus, the field price of 1 kg of barley in 2018 at the local market was 15 Ethiopian Birr (ETB) and was taken as a field price of barley. The current price of Urea 12.76 ETBkg⁻¹, NPSZnB 13.82 ETBkg⁻¹ and lime was 1.6 ETB kg⁻¹. The price of different phosphorous fertilizers sources (NAFAKA, MOHP, and GPAPR) were calculated by the current price of NPSZnB fertilizer.

Results and Discussions

Grain yield

The analysis of variance indicated that lime and P fertilizer application significantly (P<0.05) affected the grain yield of barley in two years at Gozamen District (Table 2). However, the effect of lime and P fertilizer application on grain yield of barley was found significant only during the initial and the last years at Gozamen (Table 2). But in the case of Banja district, no significant effect of lime and phosphorous fertilizer all year. The combined analysis of variance over years of both districts showed a significant (P<0.05) effect of P and lime application. In general, progressive increases in grain yields were recorded from the first year to second year lime and P fertilizer application. Grain yield response was found more pronounced with the second than the first due to the residual effect of lime and P application. This implies that the application of phosphate rock (PR) would benefit farmers at least from the second planting season. The extractable soil P at the second cropping season that PR continued to decompose and release P (residual effect) into the soil (Husnain., 2013).

Shawel et al.,

		20	15			20	16		2017			
	Straw Yi	ield kgha-	Grain	yield	Straw	v Yield	Grain	n yield	Stra	w Yield	Gra	in yield
Treatment	1		Kgha-1		Kgha-1		Kg	ha-1	K	gha-1	Kgha-1	
	Unlime	Lime	Unlime	lime	Unli	lime	Unli	lime	Unli	lime	Unli	lime
	Uninc	Line	Uninic	mile	me	mile	me	mile	me	mile	me	mile
Control	1803	1963	579	695	3701	5059	1564	1586	1967	2722	1009	1391
2/3 GPAPR	2673	2952	1349	1523	4735	5842	2227	2835	5007	5907	2710	2881
Full GPAPR	2838	2973	1405	1483	4927	5830	2243	2597	4781	4981	2708	2781
2/3 MOHP	2445	2363	1131	1145	4726	4897	2147	2271	3804	5130	2053	2861
Full MOHP	2501	2357	1122	1114	4590	5048	2162	2395	4204	4874	2996	3247
2/3 NAFAKA	2404	2580	1183	1284	4303	5674	2006	2709	4878	5085	2674	3418
Full NAFAKA	2268	2734	1033	1341	4752	5301	2142	2462	4833	3456	2697	2088
Rec. NPSZnB	2960	4227	1342	1950	5680	6026	2585	2782	3407	4911	1693	2797
CV %	16.3	23.8	22.2	22.5	13	14.3	14.6	18.3	29	22.6	32	23.9
LSD 5%	675.8	1098.7	423.8	NS	NS	NS	NS	NS	NS	1835.7	NS	1112.8

Table 2. The main effect of lime and different source of phosphorous fertilizer on Barley yield at Gozamen District

The combined analysis over years at both locations revealed that all P sources and/or rates significantly increased grain yield of barley compared to the untreated control under limed and un-limed conditions (Table 3 and 4). At Gozamen the highest grain yields (2470 kg ha⁻¹) of barley were recorded from the application of ¹/₄ the recommended lime together with 136 kg/ha NPSZnB fertilizer, followed by 191 kg ha⁻¹NAFAKA which recorded a grain yield of 2469 kg ha⁻¹. But it was statistically at par with all the rest treatments except the control (Table 3). Similarly, the highest grain yield (1675 kg ha⁻¹) at Banja district was recorded from the application of 136 kg/ha NPSZnB under limed condition followed by the application of 146 kg ha GPAPR phosphorous in combination with 1/4th the recommended lime which recorded the grain yield of 1669 kg ha⁻¹ (Table 4). Mean barley grain yield increment of Goazamen district in the combined analysis at 136 NPSZnB kg/ha P fertilizer plus ¹/₄ of recommended lime was 12.4Q/ha yield difference over the limed control treatment (Table 4).

Jiera at Column	2 10 11 10 1 0 0 11	ie inie a 'e 'je ai		
Treatment	Pooled over	year		
	Straw Yield	kgha-1	Grain yield k	gha-1
	Un-limed	lime	Un-limed	Lime
Control	2490	3248	1051	1224
2/3 GPAPR	4138	4900	2119	2380
Full GPAPR	4182	4595	1954	2287
2/3 MOHP	3658	4130	1777	2092
Full MOHP	3765	4093	2093	2252
2/3 NAFAKA	3862	4446	2095	2469
Full NAFAKA	3951	3830	1957	1964
Rec. NPSZnB	4016	5055	1873	2470
CV %	15	13.4	18.6	14.9
LSD 5%	990.1	1004.3	608.2	559.3

Table 3. The main effect of lime and different source of phosphorous fertilizer on Barley yield at Gozamen District combined over year

According to Achalu, (2012), the increase in crop yield through the application of lime may be attributed to the neutralization of Al^{3+} supply of Ca^{2+} and increasing availability of some plant nutrients like P. Furthermore, increase in grain yield with the application of lime could be due to the favorable effect on the chemical, physical, and microbial properties of the soil. Numerous authors (Scott et al., 1999; Farhoodi and Coventry, 2008) reported that the application of lime brings about several chemical and biological changes in the soil, which is beneficial to improve crop yields in acid soils. In the present study, the higher grain yield realized from the calcitic lime application during the initial years indicates fast dissolution reaction and high acid neutralization capacity of calcite lime. Similar behavior and performance were reported by other researchers about the fast dissolution and high reactivity of calcite (Hartwig and Loeppert, 1992), as well as its high effect (Bailey et al., 1989), and high solubility in acid (Merry et al., 1995).

Treatment	2016				2017				combined			
	Straw Yie	ld	Grain yield		Straw	Yield	Grain yield		ld Straw Y		Grain yield	
	Kgha-1		Kgha-1		kgha-1	kgha-1 Kgha		Kgha-1		kgha-1		
	Un-	lime	Un-	lime	Un-	lime	Un-	lime	Un-	Lime	Un-	Lime
	limed		limed		limed		limed		limed		limed	
Control	2037	2762	553.9	1363	1000	2111	327	804	1519	2436	440.5	1083
2/3 GPAPR	2593	3300	638.8	1412	2296	3741	1377	1881	2537	3520	854.4	1669
Full GPAPR	2284	2991	727.4	1574	2667	4148	1356	1952	2475	3570	830.3	1637
2/3 MOHP	2593	3300	734.4	1426	2007	2778	799	1337	2300	3039	766.6	1455
Full MOHP	2346	2960	601.7	1289	2139	3296	1075	1563	2242	3128	838.5	1426
2/3 NAFAKA	2438	3331	693.4	1550	2243	3370	967	1709	2340	3351	1041.7	1629
Full NAFAKA	2593	3084	632.7	1417	2870	3148	1246	1565	2731	3116	939.4	1491
Rec. NPSZnB	2438	3238	606.6	1426	3185	4102	1442	1923	2812	3670	1024.4	1675
CV %	18.1	14.8	24.5	10.1	23	19.8	14.9	15.5	25.5	21.3	33.1	13.6
LSD 5%	NS	NS	NS	NS	882.8	NS	266.1	NS	695.5	791.6	320.4	236.6

Table 4. The Main effect of lime and different source of phosphorous fertilizer on Barley yield at Banja District

Soil Chemical Properties

As shown in Tables 5 and 6 generally liming slightly increased soil pH and available P and reduce exchangeable acidity. Essentially amelioration of soil acidity comprises detoxification of Al and Mn activity with the aid of lime amendment. Detoxification of Al can be achieved by increasing soil pH which in turn certainly results in a decrease in Al solubility thereby minimizes its toxic effect on plants (Gover et al.,2017). The increase in the grain yield of barley due to lime application in combination with different P sources and/or rates could be related to the improvement in the soil pH and availability of P which is in line with the finding of (Olabanji, 2015). Application of lime and phosphate rock its residual effect highly decreased exchangeable acidity and Al^{+3} from the initial (Table 5 and 6). Meng et al. (2004) reported similar findings with the application of lime; acidity, particularly exchangeable Al^{3} +, was reduced from 5.46 to 1.52 cmol/kg.

Treatment	Unli	me					lime					
	pН	P/PPM	OC	OM	Exch	Exch Al	pН	P/PPM	OC	OM%	Exch	Exch
			%	%	Acidity	meq/10			%		Acidit	Al
					meq/10	0 gm					у	meq/1
					0gm						meq/1	00 gm
											00gm	
Control	5.3	10.9	1.60	2.82	1.20	0.09	5.4	12.9	1.60	2.76	0.73	0.00
2/3 GPAPR	5.2	14.1	1.40	2.57	0.80	0.00	5.6	15.4	1.81	3.12	0.85	0.00
Full GPAPR	5.0	12.1	1.50	2.63	1.14	0.10	5.4	11.8	1.51	2.61	0.71	0.04
2/3 MOHP	5.3	12.0	1.40	2.57	0.66	0.00	5.4	14.7	1.48	2.58	0.94	0.06
Full MOHP	5.3	12.7	1.30	2.23	0.89	0.00	5.3	14.2	1.95	3.36	0.88	0.02
2/3 NAFAKA	5.2	11.1	1.50	2.58	1.08	0.00	6.1	17.2	1.54	2.66	0.59	0.00
Full NAFAKA	5.2	12.1	1.50	2.66	0.86	0.00	5.6	14.4	1.76	3.03	0.60	0.00
Rec. NPSZnB	5.2	12.6	1.60	2.69	0.87	0.00	5.5	16.6	1.28	2.20	1.05	0

Table 5. Lime and phosphorus residual effect on some soil chemical property of Gozamen District

Note: P=Phosphorus, OC=Organic Carbon, OM=Organic Matter

Table 6. Lime and phosphorus residual effect on some soil chemical property of Banja District

Treatment	Unlin	ne					lime						
	pН	P/PPM	OC%	OM%	Exch	Exch	pН	P/PPM	OC	OM	Exch	Exch	
					Acidity	Al			%	%	Acidity	Al	
					Meq/100	Meq/					Meq/10	meq/1	
					gm	100					0 gm	00gm	
						gm							
Control	5.2	11.7	1.003	1.73	0.971	0.216	5.2	12.9	0.78	1.35	1.36	0.798	
2/3 GPAPR	5.5	14.0	0.672	1.16	0.824	0.256	5.7	15.4	0.55	0.94	1.05	0.282	
Full GPAPR	5.3	11.6	1.017	1.75	0.941	0.194	5.5	14.4	0.76	1.31	1.17	0.958	
2/3 MOHP	5.6	11.8	0.427	0.74	0.531	0.169	5.6	11.9	0.95	1.64	1.51	0.568	
Full MOHP	5.4	12.6	0.863	1.49	0.869	0.245	5.5	12.5	0.82	1.42	1.70	0.856	
2/3													
NAFAKA	5.4	13.8	0.798	1.38	0.704	0.000	5.4	12.1	0.75	1.29	1.21	0.531	
Full													
NAFAKA	5.6	15.2	0.518	0.89	0.416	0.000	5.5	12.2	0.94	1.63	1.35	0.666	
Rec. NPSZnB	5.3	10.0	1.009	1.74	1.432	0.661	5.4	11.7	0.98	1.68	1.04	0.337	

Note: P=*Phosphorus, OC*=*Organic Carbon, OM*=*Organic Matter*

Economic analysis

Partial budget analysis of lime with different phosphorus fertilizers was presented in Table 7 to Table 10. The net benefit of 49914.2 ETB ha⁻¹ and marginal rate return of 590.8 % was obtained from the application of 136 kg NPSzB ha⁻¹ and lime for barley production at Gozamen district. The next higher net benefits 39746.3ETB ha⁻¹ and the marginal rate return of 292.2% was gained from sole use of 146 kg GPAPR phosphorus fertilizer. At Banja district, the net benefit 29893.8ETB ha⁻¹ and marginal rat return of 1483.1% was obtained from the application of 146 kg GPAPR ha⁻¹ and lime. The next higher MRR (584.6%) with a net benefit of17618 ETB ha⁻¹ was obtained from the sole use of 191NAFAKA kg ha⁻¹ phosphorus fertilizers.

Treatment	TVC	GY	AdGY	ST Y	Ad STY	GB	NB	MRR (%)			
With lime	(ETB^{-1})	(kgha ⁻¹)	(kgha ¹)	(kgha ¹)	(kgha ¹)	(ETBha ⁻¹)	(ETBha ⁻¹)				
Control	478.3	1224	1101.6	3248	2923.3	16524	29200.1				
2/3 GPAPR	5573.42	2380	2142	4900	4410	32130	46201.58	50.0			
Full GPAPR	5783.02	2287	2058.3	4595	4135.5	30874.5	43701.23	D			
2/3 MOHP	4367.82	2092	1887.8	4130	3717	28317	40675.68	D			
Full MOHP	5174.52	2252	2026.8	4098	3683.7	30402	41804.13	D			
2/3 NAFAKA	4526.27	2470	2223	4446	4001.4	33345	46825.03	570.3			
Full NAFAKA	5501.68	1964	1767.6	3830	3447	26514	36523.82	D			
Rec. NPSZnB	3984.6	2476	2228.4	5055	4549.5	33426	49914.15	590.8			

Table 7. Partial budget analysis of lime and different phosphorus sources on barley at Gozamen

Note: AGY (kg/ha)=Adjusted grain yield, GB (GY)=Gross benefit, TVC (ETB/ha)=Total variable costs, NB (Birr/ha)=Net benefit and MRR (%)=Marginal rate of return, D=Dominated treatment and ETB=Ethiopian Birr.

Table 8. Partial budget analysis of different phosphorus sources on barley at Gozamen

Treatment	TVC	GY	AdGY	STY	AdSTY	GB	NB	MRR
Without lime	(ETBha ⁻¹)	(kgha ⁻¹)	(kgha ⁻¹)	(kgha ⁻¹)	(kgha ⁻¹)	(ETBha ⁻¹)	(ETBha ⁻¹)	(%)
Control	0	1051	945.9	2490	2241	24273	24273	
2/3 GPAPR	5295.12	2095	1885.5	4138	3724.2	45041.4	39746.28	292.2
Full GPAPR	5304.72	2119	1907.1	4182	3763.8	45543.6	40238.88	9.3
2/3 MOHP	3889.52	1777	1599.3	3658	3292.2	38804.4	34914.88	D
Full MOHP	4696.22	2093	1883.7	3765	3388.5	43503.75	38807.53	82.9
2/3 NAFAKA	4047.97	1954	1758.6	3862	3475.8	42020.1	37972.13	D
Full NAFAKA	5023.38	1957	1761.3	3951	3555.9	42421.05	37397.67	D
Rec. NPSZnB	3506.3	1873	1685.7	4016	3614.4	41550.3	38044	18.4

Note: AGY (kg/ha)=Adjusted grain yield, GB (GY)=Gross benefit, TVC (ETB/ha)=Total variable costs, NB (Birr/ha)=Net benefit and MRR (%)=Marginal rate of return, D=Dominated treatment and ETB=Ethiopian Birr.

Table 9.	Partial	budget a	analysis	of lime	and d	lifferent	phos	phorus	sources	on	barley	at Ba	nja
		<u> </u>	~								~		

Treatment	TVC	GY	AdGY	STY	AdSTY	GB	NB	MRR
With lime	(ETBha ⁻	(kgha ⁻¹)	(kgha ⁻¹)	(kgha ⁻	$(kgha^{-1})$	(ETBha ⁻¹)	(ETBha ⁻¹)	(%)
	1)	_	-	1)	-			
Control	3263.6	1083	974.7	2436	2192.4	25582.5	22318.9	
2/3 GPAPR	8558.72	1675	1507.5	3520	3168	38452.5	29893.78	1483.1
Full GPAPR	8568.32	1637	1473.3	3570	3213	38164.5	29596.18	D
2/3 MOHP	7153.12	1455	1309.5	3039	2735.1	33318	26164.88	D
Full MOHP	7959.82	1426	1283.4	3128	2815.2	33327	25367.18	D
2/3	7311.57	1629	1466.1	3351	3015.9	37071	29759.43	
NAFAKA								514.6
Full	8286.98	1491	1341.9	3116	2804.4	34150.5	25863.52	
NAFAKA								399.4
Rec.	6769.9	1689	1520.1	3670	3303	39316.5	32546.6	
NPSZnB								291.7

Note: AGY (kg/ha)=Adjusted grain yield, GB (GY)=Gross benefit, TVC (ETB/ha)=Total variable costs, NB (Birr/ha)=Net benefit and MRR (%)=Marginal rate of return, D=Dominated treatment and ETB=Ethiopian Birr.

Treatment	TVC	GY	AdY	STY	AdSTY	GB	NB	MRR				
Without lime	(ETBha ⁻¹)	(kgha ⁻¹)	(kgha ⁻¹)	(kgha ⁻¹)	(kgha ⁻¹)	(ETBha ⁻¹)	(ETBha ⁻¹)	(%)				
Control	0	440.5	396.4	1519	1503.1	12709.95	12709.95					
2/3 GPAPR	5295.12	854.4	768.9	2537	2521.1	22878.45	17583.33	D				
Full GPAPR	5304.72	1041.7	937.5	2475	2459.1	25128.45	19823.73	391.0				
2/3 MOHP	3889.52	766.6	689.9	2300	2284.1	20626.95	16737.43	D				
Full MOHP	4696.22	838.5	754.6	2242	2226.1	21336.45	16640.23	D				
2/3 NAFAKA	4047.97	830.3	747.2	2340	2324.1	21666.45	17618.48	584.6				
Full NAFAKA	5023.38	939.4	845.4	2731	2715.1	24898.95	19875.57	51.0				
Rec. NPSZnB	3506.3	1024.4	922.2	2812	2796.1	26415.45	22909.15	124.9				

Table 10. Partial budget analysis of different phosphorus sources on barley at Banja

Note: AGY (kg/ha)=Adjusted grain yield, GB (GY)=Gross benefit, TVC (ETB/ha)=Total variable costs, NB (Birr/ha)=Net benefit and MRR (%)=Marginal rate of return, D=Dominated treatment and ETB=Ethiopian Birr.

Conclusions and Recommendation

Information on crop response to lime and different P sources of fertilizer rates is crucial to come up with profitable and sustainable barley production. The application of 136 kg NPSZnB ha⁻¹ together with 1/4th of recommended lime annually was found to be economically feasible for barley production around Gozamen district. However, farmers who have no access to lime can apply 146 kg ha⁻¹ GPAPR phosphorus for optimum production of barley in the area. At Banja, the combined application of 146 kg ha⁻¹ GPAPR and 1/4th of recommended lime applied annually and sole use of 191 kg ha⁻¹ NAFKA was economically feasible.

Acknowledgments

We are grateful for the financial grant of GIZ through the Amhara Agricultural Research Institute. We also acknowledge the staff and soil laboratory technicians of Adet Agricultural Research Centers for their logistic supports and technical help during the analysis of soil samples.

References

- Achalu C. 2012. Effects of Liming on Acidity-Related Chemical Properties of Soils of Different Land Use Systems in Western Oromia, Ethiopia. World Journal of agricultural society Vol. 8(6) pp. 560-567.
- Bailey JS, Stevens RJ, Kilpatrick DJ (1989). A rapid method for predicting the lime requirement of acidic temperate soils with widely varying organic matter contents. III. A lime-quality correction model. J. Soil Sci. 40:831-847.

- Birhanu A. 2010. Soil Acidity Problems and Comparison of Lime Requirement, Determination Methods in Different Land Use in Fagetalekoma Woreda, Awi Zone, Amhara Region, Environmental Science Program, MSc. *Thesis Submitted to School of Graduate Studies of AAU*.
- Berhane Lakew, Hailu Gebre, and Fekadu Alemayehu. 1996. Barley production and research.
 Pp 1-8. In: Hailu Gebre and Joob Van Luer (eds). Barley Research in Ethiopia: Past work and future prospects. Proceedings of the first barley research review workshop 16-19, October. 1993. Addis Ababa, IAR/ICARDA. Addis Ababa, Ethiopia
- CIMMYT (International maize and wheat improvement Center) (1988): From agronomic data to farmers recommendations. Economics training manual (completely revised ed.)D. F. Mexico: CIMMYT.
- CSA. 2018. Central Statistical Agency, Agricultural Sample Survey for 2017/18 (2010 EC), Report on area and production of major crops (Private peasant holdings, *Meher* season), Statistical bulletin, 586, April 2018, Addis Ababa, Ethiopia.
- Curtin D, Syres JK. 2001. Lime-induced changes in indices of soil phosphate availability, Soil Science Society of American Journal 65, 147-152.
- Farhoodi A, Coventry DR (2008). Field crop responses to lime in the mid-north region of South Australia. Field Crops Res. 108:45-53.
- Fageria, N., and Baligar, V. (2008). Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. 99, 345-399.
- Grover SP, Butterly CR, Wang X, Tang C (2017) The short-term effects of liming on organic carbon mineralisation in two acidic soils as affected by different rates and application depths of lime. Biol Fertil Soils 53:431 443
- Hartwig RC, Loeppert RH (1992). A pH-stat procedure for evaluating reactivity of agricultural limestone. Soil Sci. Soc. Am. J. 56:302-308.
- Husnain, S.Rochayati, T. Sutriadi, A. Nassir and Sarwani 2013. Improvement of soil for crop production through direct Application of phosphate rock on maize in Indonesia.
- Johnston, A.E., Goulding, K.W.T. & Poulton, P.R. 1986. Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. Soil Use and Management, 2, 3 10.
- Kamprath EJ (1984). Crop Response to lime in the tropics. In: Adams, F. (eds.). Soil Acidity and Liming. Agronomy Madison, Wisconsin, USA 12:349-368.

- Keeney, D.R. and D.W. Nelson. 1982. Nitrogen inorganic forms. In A.L. Page (eds.) Methods of soil analysis, part 2. Agron. Monogr. 9, 2nd ed. ASA and SSSA, Madison, WI. p. 643-698.
- Martin, JH Walden, RP and Stamp, DL. 2006. Principle of field crop production. Pearson Education, Inc. USA.
- Mesfin, A. 2009. Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Cantarella, eds. Plant-Soil Interactions at Low pH. *Campinas, Brazil: Brazilian So.* (2nd editio, Ed.).
- Merry RH, Hodge TJ, Lewis V, Jacka J (1995). Evaluation of liming materials used in South Australia. In: Date RA, Grundon, NJ, Rayment GE and Probert ME (eds.). Plant Soil Interactions at Low pH: Principles and Management. Kluwer Academic Publishers, Dordrecht, The Netherlands pp. 497-503.
- Meng C, Lu X, Cao Z, Hu Z, Ma W (2004). Long-term effects of lime application on soil acidity and crop yields on a red soil in Central Zhejiang. Plant Soil 265:101-109.
- Mulatu, B. and Grando, S. 2011. Barley Research and Development in Ethiopia. Proceedings of the 2nd National Barley Research and Development Review Workshop. 28-30 November 2006, HARC, Holetta, Ethiopia. ICARDA, P. O Box 5466, Aleppo, Syria. pp xiv + 391.
- Oguntoyinbo FI, Aduayi EA, Sobulo RA. 1996. Effectiveness of some local liming materials in Nigeria as ameliorant of soil Journal of Plant Nutrition 19, 999-1016.
- Olsen, S. R. and Sommers, L. E. 1982. Phosphorus. pp. 403-430. In: A. L. Page, et al. (eds.) Methods of soil analysis: Part 2. Chemical and microbiological properties. Agron. Mongr. 9. 2nd ed. ASA and SSSA, Madison, WI.
- Olabanji, I. O., Oluyemi E. A., & Obianjuwa, E., I. (2015). Nondestructive analysis of dumpsite soil and vegetable for elemental composition. Journal of Environmental Chemistry and Ecotoxicology, 7(1), 1-10.
- Rowell, D. L., 1994. Soil Science: Methods and Application, Addison Wesley Longman, Limited England.
- SAS (Statistical Analysis Systems). 2008. Software version 9.2. Cary, N.C: Statistical Analysis Systems Institute.
- Scott BJ, Conyers MK, Poile GJ, Cullis BR (1999). Re-acidification and reclaiming effects on soil properties and wheat yield. Aust. J. Expt. Agric. 39:849-856.

- Tarekegne, A., Gebre, H., and Francis, C. A. 1997. Yield Limiting Factors to Food Barley Production in Ethiopia. Journal of Sustainable Agriculture, 10(2-3), 97 113. doi:10.1300/j064v10n02_09.
- Wosene, G. Abtew, Berhane Lakew, Bettina I. G. Haussmann and Karl J. Schmid, 2015.
 Ethiopian barley landraces show higher yield stability and comparable yield to improved varieties in multi-environment field trials. Journals of Plant Breeding and Crop Science. Vol. 7(8), pp. 1-17. [12] Zemede Asfaw, 2000. The Barley of Ethiopia. Pp 77-108. In: Stephen B. Brush (ed). Genes in the Field: On farm Conservation of Crop Diversity. IDRC/IPGRI.
- Van Reeuwijk, L. P. (1992). *Procedures for soil analysis* (3rd ed.). International soil reference and information center, Wageningen (ISRIC). The Netherlands.