Evaluation and characterization of physico-chemical quality parameters of stingless Bee (*Apidae Meliponini*) honey in Amhara Region

Yesuf Ebrahim^{1*}, Alemu Tsegaye¹, Engdaw Malede² and Ertiban Desale¹ ^{1*}Sekota Dryland Agricultural Research Center, P.O. Box 62, Sekota, Ethiopia ²Andassa Livestock Research Center, P.O. Box 27, Bahir Dar, Ethiopia Corresponding author email: yesibro85@gmail.com

ABSTRACT

This study aimed to evaluate the physicochemical parameters of honey samples of stingless bees (Meliponinae). Following the honey flow season, the honey samples were collected from 9 potential districts in the Amhara region. About 41 honey samples were evaluated for physicochemical parameters of pH, free acidity, electrical conductivity, hydroxymethylfurfural, moisture content, specific rotation, ash content, color, reducing sugars, and sucrose. The Melissopalynological and sensory analysis had been used as a complement to physicochemical analysis. The composition analysis showed that the mean values of moisture content were 29.69±3.53; electric conductivity, 0.78±0.14; pH, 3.38±0.19; ash, 0.5±0.17; free acidity, 67.47±23.85; HMF, 8.38±4.47; specific rotation, 2.24±4.79; total reducing sugar, 55.27±4.24 and Sucrose, 3.17±1.5. The color of honey ranges from amber (97.6%) to dark amber (2.4%). The values compared against the standard Apis mellifera honey quality parameters and varied for some parameters based on botanical origin. The parameters pH, electric conductivity, sucrose, ash and HMF in the honey samples comply with the requirements of the previous global reports. The moisture content, reducing sugar, and free acidity do not comply with the limit compared to Apis mellifera honey, implying that this product can undergo fermentation quickly if not properly stored after harvesting. This fact showed the necessity of proper honey harvesting, creating specific legislation for stingless bee honey, and justifies the need for a more harmonized standard of the product. The sensory evaluation result also revealed that on average the judges slightly like the stingless bee honey, which is slightly above the neutral score 5 (neither like nor dislike). The result of the melissopalynological analysis also confirmed the presence of three predominant plant species and important pollen types that confirm the honey botanical and its real geographical origin.

Keywords:

INTRODUCTION

crevices and such other concealed places.

G

G

J

G

MATERIAL AND METHODS

E E

E

Determination of moisture content

J

Determination of pH and acidity

Determination of electrical conductivity

•

Е

Determination of hydroxymethylfurfural (HMF)

•

Determination of specific rotation

Determination of ash content

$$\frac{m_{3}-m_{1}}{m_{2}} * 100$$

Reducing sugar and apparent sucrose determination

Е

Pollen analysis

E E JEE

Predominant pollen type Secondary pollen type E Important minor pollen type E Minor pollen type

J

Color

Physical characterization using sensory analysis

G

Statistical analyses

RESULTS AND DISCUSSION

Moisture content

Ε

G

pH and free acidity

Ε

J

Electrical conductivity

Е

Е

Е

G G J G G

G

Ash content

J

LJ

Ε

HMF

G

J

Total reducing sugar and sucrose

G J E

Specific rotation

J

G

Correlation among some physicochemical parameters

G Е Е

G

G G

Sensory evaluation

GE B G G E G

E

Е

Melissopalynological analysis

G E G G

G E G E

J

E G G E

J

E E G

_____J E

Guizotia	Asteraceae
abyssinica	
Bidens	Asteraceae
pachyloma	
Eucalyptus	Myrtaceae
camaldulensis	
Total	

E		
Bidens pachvloma	Asteraceae	
Caesalpinia decapetala	Fabaceae	
Echinops	Asteraceae	
Eucalyptus camaldulensis	Myrtaceae	
Gravillea robusta	Proteaceae	
Guizotia abyssinica	Asteraceae	
Hypericum quartinianum	Guttiferae	
Hypoestes trifolia	Acanthaceae	
Sorghum bicolor	Poaceae	
Vicia faba	Fahaceae	

_____J E

Gravillea	Proteaceae
robusta	
Bersama	Francoaceae
abyssinica	
Bidens	Asteraceae
pachyloma	
Caesalpinia	Fabaceae
decapetala	
Croton	Euphorbiaceae
macrostachyus	
Echinops spps	Asteraceae
Eucalyptus	Myrtaceae
camaldulensis	
Hypericum	Guttiferae
quartinianum	
Hypoestes	Acanthaceae
trifolia	
Zea mays	Poaceae
Schinus molle	Anacardiaceae
Sorghum	Poaceae
bicolor	
Viciafaba	Papilionaceae

	J			
E				

Acces	Fabraca
	Fabaceae
brevispica	
Acacia senegal	Fabaceae
Acacia seyal	Fabaceae
Becium	Lamiaceae
grandiflorum	
Bersama	Francoaceae
abyssinica	
Caesalpinia	Fabaceae
decapetala	
Echinops spps	Asteraceae
Zea mays	Poaceae
Ocimum	Lamiaceae
bacilicum	
Sorghum	Poaceae
bicolor	
Vernonia spps	Asteraceae

CONCLUSION AND RECOMMENDATION

E G

J

•

REFERENCES

J

Е

Е Е E J E GJ G G J Е I I IG IG I I I G J Е G Е E E G G Е JJ J G EGG G G J J J J J G J G G Е J J В Ε